Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider the vacuum wave function of a free scalar field theory in space partitioned into two regions, with the field obeying Robin conditions (of parameter ) on the interface. A direct integration over fields in a subregion is carried out to obtain the reduced density matrix. This leads to a constructive proof of the Reeh-Schlieder theorem. We analyze the entanglement entropy as a function of the Robin parameter . We also consider a specific conditional probability as another measure of entanglement which is more amenable to analysis of the dependence on interface conditions. Finally, we discuss a direct calculation of correlation functions and how it gives an alternate route to the reduced density matrix. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
-
There are two sets of orbits of the Virasoro group which admit a Kähler structure. We consider the construction of coherent states for the orbit [Formula: see text] which furnishes unitary representations of the group. The procedure is analogous to geometric quantization using a holomorphic polarization. We also give an explicit formula for the Kähler potential for this orbit and comment on normalization of the coherent states. We further explore some of the properties of these states, including the definition of symbols corresponding to operators and their star products. Some comments which touch upon the possibility of applying this to gravity in [Formula: see text] dimensions are also given.more » « lessFree, publicly-accessible full text available January 10, 2026
-
Generalizing from previous work on the integer quantum Hall effect, we construct the effective action for the analog of Laughlin states for the fractional quantum Hall effect in higher dimensions. The formalism is a generalization of the parton picture used in two spatial dimensions, the crucial ingredient being the cancellation of anomalies for the gauge fields binding the partons together. Some subtleties which exist even in two dimensions are pointed out. The effective action is obtained from a combination of the Dolbeault and Dirac index theorems. We also present expressions for some transport coefficients such as Hall conductivity and Hall viscosity for the fractional states. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
-
In this paper, we consider the Hamiltonian analysis of Yang–Mills theory and some variants of it in three space–time dimensions using the Schrödinger representation. This representation, although technically more involved than the usual covariant formulation, may be better suited for some nonperturbative issues. Specifically for the Yang–Mills theory, we explain how to set up the Hamiltonian formulation in terms of manifestly gauge-invariant variables and set up an expansion scheme for solving the Schrödinger equation. We review the calculation of the string tension, the Casimir energy and the propagator mass and compare with the results from lattice simulations. The computation of the first set of corrections to the string tension, string breaking effects, extensions to the Yang–Mills–Chern–Simons theory and to the supersymmetric cases are also discussed. We also comment on how entanglement for the vacuum state can be formulated in terms of the BFK gluing formula. This paper concludes with a discussion of the status and prospects of this approach.more » « less
-
A gauge-invariant mass term for nonabelian gauge fields in two dimensions can be expressed as the Wess–Zumino–Witten (WZW) action. Hard thermal loops in the gauge theory in four dimensions at finite temperatures generate a screening mass for some components of the gauge field. This can be expressed in terms of the WZW action using the bundle of complex structures (for Euclidean signature) or the bundle of lightcones over Minkowski space. We show that a dynamically generated mass term in three dimensions can be put within the same general framework using the bundle of Sasakian structures.more » « less
An official website of the United States government
